Skip to main content

Exercise 3.2

ใพใšใ€h(x)h(x)ใ‚’c(x)c(x)ใ‚’็”จใ„ใฆ่กจใ™ใจ

h(x)={mix(0.3,0.9,c(x+1))=0.3+0.6c(x+1)(โˆ’1โ‰คxโ‰ค0)mix(0.9,0.6,c(x))=0.9โˆ’0.3c(x)(0โ‰คxโ‰ค1)h(x) = \left\{ \begin{array}{ll} \text{mix}(0.3, 0.9, c(x+1)) = 0.3 + 0.6 c(x+1) & (-1 \leq x \leq 0)\\ \text{mix}(0.9, 0.6, c(x)) = 0.9 - 0.3 c(x) & (0 \leq x \leq 1) \end{array} \right.

ใงใ‚ใ‚‹ใŸใ‚ใ€h(x)h(x)ใŒ[โˆ’1,1][-1, 1]ๅŒบ้–“ไธŠใงC3C^3็ดšใจใชใ‚‹ใซใฏใ€c(x)c(x)ใจใ—ใฆ[0,1][0, 1]ๅŒบ้–“ไธŠใงC3C^3็ดšใช่ฃœ้–“้–ขๆ•ฐใงใ‚ใ‚Šใ€ใ‹ใค่ฃœ้–“ใ™ใ‚‹ๅ„็‚น(ใ“ใ“ใงใฏ(0,0)(0,0)ใจ(1,1)(1,1))ใงๅฐŽ้–ขๆ•ฐcโ€ฒc', cโ€ฒโ€ฒc'', cโ€ฒโ€ฒโ€ฒc'''ใ‚‰ใฎๅ€คใŒใใ‚Œใžใ‚Œ00ใจใชใ‚‹ใ‚‚ใฎใŒ่ฆ‹ใคใ‹ใ‚Œใฐ่‰ฏใ„ใ€‚

ใ“ใ‚Œใ‚’่จ€ใ„ๆ›ใˆใ‚‹ใจใ€ไปฅไธ‹ใฎ8ใคใฎ็ญ‰ๅผใ‚’ๆบ€ใŸใ™c(x)c(x)ใ‚’ๅฐŽใๅ‡บใ›ใฐ่‰ฏใ„ใ€ใจใ„ใ†ใ“ใจใงใ‚ใ‚‹ใ€‚ 8ใคใฎ็ญ‰ๅผใจใฏใ€่ฃœ้–“้–ขๆ•ฐใฎๅฎš็พฉใ‹ใ‚‰ๅพ—ใ‚‰ใ‚Œใ‚‹

c(0)=0,c(1)=1(ex3.2.1)\tag{ex3.2.1} c(0)=0, c(1)=1

ใจใ€ๅ„ๅฐŽ้–ขๆ•ฐใจ่ฃœ้–“็‚นใฎ้–ขไฟ‚ใ‹ใ‚‰ๅพ—ใ‚‰ใ‚Œใ‚‹

cโ€ฒ(0)=0,cโ€ฒ(1)=0cโ€ฒโ€ฒ(0)=0,cโ€ฒโ€ฒ(1)=0cโ€ฒโ€ฒโ€ฒ(0)=0,cโ€ฒโ€ฒโ€ฒ(1)=0(ex3.2.2)\tag{ex3.2.2} \begin{array}{c} c'(0)=0, c'(1)=0 \\ c''(0)=0, c''(1)=0 \\ c'''(0)=0, c'''(1)=0 \end{array}

ใ‚‰ใ‚’ๆŒ‡ใ™ใ€‚

ใ•ใฆใ€ๅพ—ใ‚‰ใ‚ŒใŸ็ญ‰ๅผใฏ8ใคใ‚ใ‚‹ใฎใงใ€ๅคš้ …ๅผc(x)c(x)ใ‚’ๆฑ‚ใ‚ใ‚‹ใซใ‚ใŸใ‚Šใ€8ใคใฎไฟ‚ๆ•ฐใ‚’ๆŒใฃใŸ7ๆฌกใฎๅคš้ …ๅผใ‹ใ‚‰ๅง‹ใ‚ใŸใ„ใ€‚ใคใพใ‚Šc(x)c(x)ใŒไธ‹่จ˜ใฎๆง˜ใซ่กจ็พใงใใŸใจใ—ใฆใ€ๅ„ana_nใฎๅ€คใ‚’ๆฑ‚ใ‚ใŸใ„ใ€‚

c(x)=a7x7+a6x6+a5x5+a4x4+a3x3+a2x2+a1x+a0c(x) = a_7 x^7 + a_6 x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0

ใพใšใ€(ex3.2.1)ๅผใ‹ใ‚‰ใ€

c(0)=0+0+0+0+0+0+0+a0=0c(1)=a7+a6+a5+a4+a3+a2+a1+a0=1c(0) = 0 + 0 + 0 + 0 + 0 + 0 + 0 + a_0 = 0 \\ c(1) = a_7 + a_6 + a_5 + a_4 + a_3 + a_2 + a_1 + a_0 = 1

ใ‚’ๅพ—ใ‚‹ใ€‚ๆฌกใซใ€ๅ„็จฎๅฐŽ้–ขๆ•ฐใ‚‚ana_nใ‚’ไฝฟใฃใฆ่จ˜่ผ‰ใ™ใ‚‹ใจใ€

cโ€ฒ(x)=7a7x6+6a6x5+5a5x4+4a4x3+3a3x2+2a2x+a1cโ€ฒโ€ฒ(x)=42a7x5+30a6x4+20a5x3+12a4x2+6a3x+2a2cโ€ฒโ€ฒโ€ฒ(x)=210a7x4+120a6x3+60a5x2+24a4x+6a3c'(x)= 7 a_7 x^6 + 6 a_6 x^5 + 5 a_5 x^4 + 4 a_4 x^3 + 3 a_3 x^2 + 2 a_2 x + a_1 \\ c''(x)= 42 a_7 x^5 + 30 a_6 x^4 + 20 a_5 x^3 + 12 a_4 x^2 + 6 a_3 x + 2 a_2 \\ c'''(x)= 210 a_7 x^4 + 120 a_6 x^3 + 60 a_5 x^2 + 24 a_4 x + 6 a_3

ใงใ‚ใ‚‹ใฎใง(ex3.2.2)ๅผใ‚ˆใ‚Šใ€

cโ€ฒ(0)=0+0+0+0+0+0+a1=0cโ€ฒ(1)=7a7+6a6+5a5+4a4+3a3+2a2+a1=0c'(0) = 0 + 0 + 0 + 0 + 0 + 0 + a_1 = 0 \\ c'(1) = 7 a_7 + 6 a_6 + 5 a_5+ 4 a_4 + 3 a_3 + 2 a_2 + a_1 = 0 \\
cโ€ฒโ€ฒ(0)=0+0+0+0+0+a2=0cโ€ฒโ€ฒ(1)=42a7+30a6+20a5+12a4+6a3+2a2=0c''(0) = 0 + 0 + 0 + 0 + 0 + a_2 = 0 \\ c''(1) = 42 a_7+ 30 a_6+ 20 a_5 + 12 a_4 + 6 a_3 + 2 a_2 = 0 \\
cโ€ฒโ€ฒโ€ฒ(0)=0+0+0+0+a3=0cโ€ฒโ€ฒโ€ฒ(1)=210a7+120a6+60a5+24a4+6a3=0c'''(0) = 0 + 0 + 0 + 0 + a_3 = 0 \\ c'''(1) = 210 a_7 + 120 a_6 + 60 a_5 + 24 a_4 + 6 a_3 = 0

ใ‚‰ใ‚’ๅพ—ใ‚‹ใ€‚a0=a1=a2=a3=0a_0=a_1=a_2=a_3=0ใฏ่‡ชๆ˜Žใชใฎใงใ€ๅพŒใฏ4ๅ…ƒ้€ฃ็ซ‹ๆ–น็จ‹ๅผ

(11117654423020122101206024)(a7a6a5a4)=(1000)\begin{pmatrix} 1 & 1 & 1 & 1 \\ 7 & 6 & 5 & 4 \\ 42 & 30 & 20 & 12 \\ 210 & 120 & 60 & 24 \\ \end{pmatrix} \begin{pmatrix} a_7 \\ a_6 \\ a_5 \\ a_4 \\ \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \end{pmatrix}

ใ‚’่งฃใ„ใฆใ€a7=โˆ’20,a6=70,a5=โˆ’84,a4=35a_7 = -20, a_6 = 70, a_5 = - 84, a_4 = 35ใ‚’ๅพ—ใ‚‹ใ“ใจใŒใงใใ€็ตๆžœใจใ—ใฆใ€

c(x)=โˆ’20x7+70x6โˆ’84x5+35x4c(x) = -20 x^7 + 70 x^6 - 84 x^5 + 35 x^4

ใ‚’ๅพ—ใ‚‹ใ€‚(ใชใŠใ€c(x)c(x)ใฎใ‚ฐใƒฉใƒ•ใ‚’ๆ็”ปใ™ใ‚‹ใจใ“ใกใ‚‰ใฎๆง˜ใซใชใ‚Šใพใ™ใ€‚)

ใ•ใฆใ€็ขบ่ชใฎใŸใ‚ใ€ใ“ใฎc(x)c(x)ใ‚’ไฝฟใฃใฆh(x)h(x)ใ‚’ๆ›ธใใชใŠใ—ใฆใฟใ‚‹ใจ

h(x)={mix(0.3,0.9,c(x+1))=0.9โˆ’21x4โˆ’50.4x5โˆ’42x6โˆ’12x7(โˆ’1โ‰คxโ‰ค0)mix(0.9,0.6,c(x))=0.9โˆ’10.5x4+25.2x5โˆ’21x6+6x7(0โ‰คxโ‰ค1)h(x) = \left\{ \begin{array}{ll} \text{mix}(0.3, 0.9, c(x+1)) = 0.9 - 21 x^4 - 50.4 x^5 - 42 x^6 - 12 x^7 & (-1 \leq x \leq 0)\\ \text{mix}(0.9, 0.6, c(x)) = 0.9 - 10.5 x^4 + 25.2 x^5 - 21 x^6 + 6 x^7 & (0 \leq x \leq 1) \end{array} \right.

ใจใชใ‚‹ใŒใ€ใ“ใฎh(x)h(x)ใฎ3ๆฌกๅฐŽ้–ขๆ•ฐใฏ

hโ€ฒโ€ฒโ€ฒ(x)={โˆ’504x(1+6x+10x2+5x3)(โˆ’1โ‰คxโ‰ค0)252x(โˆ’1+6xโˆ’10x2+5x3)(0โ‰คxโ‰ค1)h'''(x) = \left\{ \begin{array}{ll} -504 x (1 + 6 x + 10 x^2 + 5 x^3) & (-1 \leq x \leq 0)\\ 252 x (-1 + 6 x - 10 x^2 + 5 x^3) & (0 \leq x \leq 1) \end{array} \right.

ใจๅญ˜ๅœจใ—ใ€ใ‹ใคx=0x = 0ใง้€ฃ็ถšใจใชใ‚‹ใŸใ‚ใ€h(x)h(x)ใฏC3C^3็ดšใงใ‚ใ‚‹ใ“ใจใŒใ‚ใ‹ใ‚‹ใ€‚

ไปฅไธŠใ‚’ใพใจใ‚ใ‚‹ใจใ€ c(x)c(x)ใจใ—ใฆใ€7ๆฌก้–ขๆ•ฐ

โˆ’20x7+70x6โˆ’84x5+35x4-20 x^7 + 70 x^6 - 84 x^5 + 35 x^4

ใ‚’ใจใ‚‹ใจใ€h(x)h(x)ใฏC3C^3็ดšใจใชใ‚‹ใ“ใจใŒใงใใ‚‹ใ€‚