Exercise 8.1
x=(x1β,x2β,x3β),y=(y1β,y2β,y3β) γ«ε―Ύγγ
xΓyβ=(x2βy3ββx3βy2β,x3βy1ββx1βy3β,x1βy2ββx2βy1β)=(y3βx2ββy2βx3β,y1βx3ββy3βx1β,y2βx1ββy1βx2β)=β(y2βx3ββy3βx2β,y3βx1ββy1βx3β,y1βx2ββy2βx1β)=βyΓxβ γ¨γͺγγ
γγγγ£γ¦γ xΓy=βyΓx γεΎγγ
x=(x1β,x2β,x3β),y=(y1β,y2β,y3β) γ«ε―Ύγγ
xβ
(xΓy)β=xβ
(x2βy3ββx3βy2β,x3βy1ββx1βy3β,x1βy2ββx2βy1β)=x1βx2βy3βββx1βx3βy2ββ+x2βx3βy1βββx2βx1βy3ββ+x3βx1βy2βββx3βx2βy1ββ=0β yβ
(xΓy)β=yβ
(x2βy3ββx3βy2β,x3βy1ββx1βy3β,x1βy2ββx2βy1β)=y1βx2βy3βββy1βx3βy2ββ+y2βx3βy1βββy2βx1βy3ββ+y3βx1βy2βββy3βx2βy1ββ=0β γ¨γͺγγ
γγγγ£γ¦γ xβ
(xΓy)=yβ
(xΓy)=0 γεΎγγ