問題 9.3-1
5種の正多面体:
Tetrahedron -> Hexahedron -> Octahedron -> Dodecahedron -> Icosahedron
exercise_9_3-1.frag
#version 300 esprecision highp float;precision highp int;out vec4 fragColor;uniform float u_time;uniform vec2 u_resolution;//begin rotvec2 rot2(vec2 p, float t){return vec2(cos(t) * p.x -sin(t) * p.y, sin(t) * p.x + cos(t) * p.y);}vec3 rotX(vec3 p, float t){return vec3(p.x, rot2(p.yz, t));}vec3 rotY(vec3 p, float t){return vec3(p.y, rot2(p.zx, t)).zxy;}vec3 rotZ(vec3 p, float t){return vec3(rot2(p.xy, t), p.z);}vec3 euler(vec3 p, vec3 t){return rotZ(rotY(rotX(p, t.x), t.y), t.z);}//end rotfloat smin(float d1, float d2, float r){float c = clamp(0.5 + (d2 - d1) * (0.5 / r), 0.0, 1.0);return mix(d2, d1, c) - r * c * (1.0 - c);}// Reference: MIT License Copyright (c) 2018 Mikael Hvidtfeldt Christensen// https://github.com/Syntopia/Polytopia/blob/master/polyhedron.glsl// https://syntopia.github.io/Polytopia/polytopes.html#define PI 3.141592vec3 nc,pNorm,pab,pbc,pca;float Degree = 5.0;float V=0., W=1., U = 0.;// degree, v, w, uvec4[5] paramArray = vec4[](vec4(3.0, 0.0, 0.0, 1.0), // Tetrahedronvec4(4.0, 0.0, 0.0, 1.0), // Hexahedronvec4(4.0, 0.0, 1.0, 0.0), // Octahedronvec4(5.0, 0.0, 0.0, 1.0), // Dodecahedronvec4(5.0, 0.0, 1.0, 0.0) // Icosahedron);void init( int idx ) {vec4 param = paramArray[idx];Degree = param.x;V = param.y;W = param.z;U = param.w;float cospin=cos(PI/Degree), scospin=sqrt(0.75-cospin*cospin);nc=vec3(-0.5,-cospin,scospin);pab=vec3(0.,0.,1.);pbc=vec3(scospin,0.,0.5);pca=vec3(0.,scospin,cospin);pNorm=normalize((V*pab+W*pbc+U*pca));pbc=normalize(pbc);pca=normalize(pca);}vec3 fold(vec3 pos) {int max = 5; //int(Degree);for(int i=0;i<7;i++){pos.xy=abs(pos.xy);float t=-2.*min(0.,dot(pos,nc));pos+=t*nc;if (i>=max) break;}return pos;}float D2Planes(vec3 pos) {float d0=dot(pos,pab)-dot(pab,pNorm);float d1=dot(pos,pbc)-dot(pbc,pNorm);float d2=dot(pos,pca)-dot(pca,pNorm);return abs(max(max(d0,d1),d2));}float regularPolyhedronSDF(vec3 pos, float s){vec3 oPos = pos;pos=fold(pos);float d=10000.;d=min(d,D2Planes(pos));return d;}float sceneSDF(vec3 p){return regularPolyhedronSDF(p, 0.5);}vec3 gradSDF(vec3 p){float eps = 0.003;return normalize(vec3(sceneSDF(p + vec3(eps, 0.0, 0.0)) - sceneSDF(p - vec3(eps, 0.0, 0.0)),sceneSDF(p + vec3(0.0, eps, 0.0)) - sceneSDF(p - vec3(0.0, eps, 0.0)),sceneSDF(p + vec3(0.0, 0.0, eps)) - sceneSDF(p - vec3(0.0, 0.0, eps))));}void main(){vec2 p = (gl_FragCoord.xy * 2.0 - u_resolution) / min(u_resolution.x, u_resolution.y);vec3 t = 2.0 + vec3(u_time * 0.5);vec3 cPos = euler(vec3(0.0, 0.0, 2.0), t);vec3 cDir = euler(vec3(0.0, 0.0, -1.0), t);vec3 cUp = euler(vec3(0.0, 1.0, 0.0), t);vec3 cSide = cross(cDir, cUp);float targetDepth = 1.0;vec3 lDir = euler(vec3(0.0, 0.0, 1.0), t);float sec = 6.0;int polyidx = int(floor(mod(float(u_time),5.0*sec)/sec));init(polyidx);vec3 ray = cSide * p.x + cUp * p.y + cDir * targetDepth;vec3 rPos = ray + cPos;ray = normalize(ray);fragColor.rgb = vec3(0.078, 0.129, 0.239);for(int i = 0; i < 50; i ++ ){if (sceneSDF(rPos) > 0.001){rPos += sceneSDF(rPos) * ray;} else {float amb = 0.1;float diff = 0.9 * max(dot(normalize(lDir), gradSDF(rPos)), 0.0);vec3 col = vec3(0.988, 0.639, 0.067);fragColor.rgb = col * (diff + amb);break;}}fragColor.a = 1.0;}